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Abstract 

Data-intensive techniques, now widely referred to as ‘big data’, allow for novel ways to 

address complexity in science. I assess their impact on the scientific method. First, big-data 

science is distinguished from other scientific uses of information technologies, in particular 

from computer simulations. Then, I sketch the complex and contextual nature of the laws 

established by data-intensive methods and relate them to a specific concept of causality, 

thereby dispelling the popular myth that big data is only concerned with correlations. The 

modeling in data-intensive science is characterized as ‘horizontal’—lacking the hierarchical, 

nested structure familiar from more conventional approaches. The significance of the 

transition from hierarchical to horizontal modeling is underlined by a concurrent paradigm 

shift in statistics from parametric to non-parametric methods. 
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1. Introduction 

For some time, computer scientists have been speaking of a fourth paradigm in scientific 

research, in addition to—as they say—theory, experiment, and simulation. The classic 

statement is by Jim Gray, a Turing award winner and former employee of Microsoft 

Research. In one of his last talks before he went missing at sea in 2007, Gray declared: ‘The 

world of science has changed, and there is no question about this. The new model is for the 

data to be captured by instruments or generated by simulations before being processed by 

software and for the resulting information or knowledge to be stored in computers. Scientists 

only get to look at their data fairly late in this pipeline. The techniques and technologies for 

such data-intensive science are so different that it is worth distinguishing data-intensive 

science from computational science as a new, fourth paradigm for scientific exploration.’ 

(Gray 2007, xix) The talk was transcribed and resulted in a collected volume titled The Fourth 

Paradigm (Hey et al. 2009). 

Big data is the latest buzzword in information technology. The term has been defined in 

various ways, most of them referring to the pure amount of information or to the technical 

challenges that big data poses in terms of the so-called ‘three Vs’ volume, velocity and variety 

(Laney 2001). From a methodological perspective, other characteristics are more relevant and 

will be taken as defining features throughout this essay: big-data science requires (i) data 

representing all relevant configurations of the examined phenomenon. For complex 

phenomena, this implies high-dimensional data, i.e. data sets involving many parameters, as 

well as a large number of observations covering a wide range of combinations of these 

parameters. Ideally, the data contains all necessary information to make predictions without 

referring to general hypotheses or rules. (ii) The second crucial characteristic concerns the 

automation of the entire scientific process, from data capture to processing to modeling. This 

allows sidestepping some of the limitations of the human cognitive apparatus but also leads to 

a loss in human understanding regarding the results of data-intensive science. 

The current debate on big data is laden with philosophy-of-science concepts like explanation, 

modeling or causation. However, lack of conceptual clarity and rigor has led to considerable 

confusion regarding the real impact and methodological novelty—for example when debating 

controversial statements such as that big data allegedly involves a shift from causation to 

correlation (Schönfelder & Cukier, Ch. 4) or that it implies ‘the end of theory’ (Anderson 

2008). Philosophy of science can provide the necessary conceptual tools to adequately assess 

such claims.
1
 

The essay provides an overview of the main issues that are relevant in connection with big 

data from a philosophy-of-science perspective. Following Gray, I argue in Section 2 that big-
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 To the best of my knowledge, the only place where data-intensive science has been discussed from a 

philosophy-of-science viewpoint is pioneering work by Sabina Leonelli including an edited volume on big data 

in biology (Leonelli 2012a) as well as several other papers on various issues, for example the significance of 

classification (Leonelli 2012b). Leonelli arrives at somewhat different conclusions, for example concerning the 

role of theory and hypotheses in data-intensive science. This is largely due to differences in aim. While Leonelli 

wants to account for the actual role that data-intensive methods play in biology, I try to sketch an idealized 

picture of data-intensive science as a research mode mostly abstracting from complications arising in scientific 

practice. 



data science should be distinguished from computer simulations as two distinct ways how 

information technologies are employed in science. Broadly speaking, the latter can be 

understood as computationally examining the implications of a mathematical model, while the 

former searches for causal structure inherent in large data sets. 

In Section 3, the scientific laws resulting from big-data techniques are given closer scrutiny.
2
 

Contrary to popular conception, big data is interested not only in correlations but essentially 

aims at causal knowledge. This will be argued for on the basis of an account of eliminative 

induction in the tradition of Francis Bacon and John Stuart Mill. Big-data laws show a 

number of characteristics that are familiar from methodological studies in the applied 

sciences. They are (i) complex specifying a large number of conditions under which a 

phenomenon will occur or, more or less equivalently, they only hold ceteris paribus. 

Relatedly, they are (ii) contextual, i.e. such laws often have only a small number of 

instantiations. 

In Section 4, the modeling in big-data science is analyzed. It lacks a number of features that 

are typical for more conventional scientific modeling geared at an efficient reduction of data 

and an adequate structuring of knowledge. By contrast, big-data-models (i) have no 

pronounced hierarchical structure, which implies that (ii) they lack substantial explanatory 

power. (iii) They rely on few modeling assumptions and (iv) they are quite complex because 

little of the data is actually discarded. The big-data type of modeling will be referred to as 

horizontal modeling in contrast to the hierarchical modeling characteristic of more traditional 

scientific methodology. 

In Section 5, the explanatory power of big-data science is examined in further detail. For this 

purpose, two kinds of explanations are distinguished: unificationist explanation referring to 

general laws or rules and causal explanation. As should be clear from the discussion above, 

big data allows for causal explanation but largely fails to provide unificationist explanation. 

Section 6 provides further evidence for a qualitative change in the nature of modeling by 

describing a concurrent paradigm shift in statistics from parametric to non-parametric 

methods. In the latter, predictions are calculated on the basis of the original data and a suitable 

algorithm without the detour over a parametric model, which attempts to summarize the data 

in terms of a relatively simple equation involving a few parameters, e.g. a linear function or a 

Gaussian distribution. 

Chapter 7 concludes by summarizing how big-data science provides new ways to deal with 

complexity. Owing to the automation of the entire scientific process, the epistemic boundary 

conditions of computers and sensor networks become relevant. The resulting computer or 

network epistemology turns out more apt to deal with complexity than our limited human 

capabilities. 

                                                 
2
 As Peter Norvig, research director at Google, writes: ‘In complex, messy domains, particularly game-theoretic 

domains involving unpredictable agents such as human beings, there are no general theories that can be 

expressed in simple equations like F = m a or E = m c
2
. But if you have a dense distribution of data points, it 

may be appropriate to employ non-parametric density approximation models such as nearest-neighbors or kernel 

methods rather than parametric models such as low-dimensional linear regression.’ (2009) Many of the ideas 

elaborated in this essay take much inspiration from scattered writings of Norvig. 



2. Big-data science versus computer simulations 

The impact of information technologies on the scientific method has mostly been discussed 

with respect to computer simulations, e.g. of the climate, the early universe or of financial 

markets (e.g. Winsberg 2010; Humphreys 2004; Gramelsberger 2010; Lenhard 2011; Frigg & 

Rice 2009; Beisbart & Norton 2012). I will now argue that big data as characterized in the 

introduction allows for methodologically novel applications of information technologies in 

science. The argument draws on Jim Gray’s distinction between computational science on the 

one hand, dealing with simulations, and informatics on the other hand, which is concerned 

with collecting and analyzing information and in his view constitutes the fourth paradigm 

(2007, xix-xx).  

The notion of computer simulations as depicted in the philosophical literature subsumes a 

number of different practices. A useful distinction concerns computer simulations in a narrow 

and in a broad sense (e.g. Frigg & Rice 2009). The former refers to the use of computers to 

solve equations that are not accessible analytically, e.g. scattering cross sections of complex 

atoms or molecules. The latter refers to the computational implementation of analytically 

intractable models. Examples are computational molecular dynamics or agent-based modeling 

in the social sciences. 

All computer simulations have in common that they rely on elaborate modeling assumptions 

that originate outside of the computer, for example in terms of dynamical equations or rules of 

evolution (Winsberg 2013). Since the computer serves as tool to explore consequences of 

these modeling assumptions, computer simulations are mainly of deductive nature. This fits 

well with Claus Beisbart’s proposal that they should be understood as arguments (2012) and 

with how typical simulations are characterized by Eric Winsberg as a sequence of theory-

model-treatment-solver-results (2010, 11). According to this author, a model is first derived 

from a general theory. Then, specific values are assigned to the parameters and boundary 

conditions in the treatment phase. Finally, model and treatment are translated into an 

algorithm to yield the desired results. 

This brief characterization of computer simulations illustrates some of the differences in 

comparison with big-data science:  

(i) The starting point is different. While computer simulations analyze a mathematical model, 

big-data science examines a collection of data. While the former are largely model-driven, the 

latter is mainly exploratory. 

(ii) Relatedly, the nature of the inferences differs. While computer simulations mainly derive 

deductive consequences of a computational model, big-data science aims at an inductive, 

mostly causal analysis of a phenomenon as will be further elaborated in Section 3.  

(iii) A crucial distinction concerns the automation of the scientific process. While for big-data 

science, the entire process from data collection to modeling to prediction is automated, 

computer simulations only assist with inferences from a mathematical model, i.e. with a 

minor part of the scientific process.  



(iv) Consequently, the loss in explanatory power is different. In computer simulations, the 

modeling assumptions can be explicitly stated and remain a firm explanatory ground for the 

model predictions. Due to the automation of the modeling process, such a basis is lacking in 

big-data science. The issue will be addressed in further detail in Section 5. 

(v) Computer simulations are sometimes described as experiments with a model (e.g. Rohrlich 

1991, 507), in the sense that the model properties are analyzed by changing parameters and 

initial conditions while observing the impact on the model outcome. By contrast, little of this 

experimental character appears in big-data modeling, because all relevant configurations of 

the system are already given in terms of data. This correlates well with the fact that computer 

simulations are usually carried out when data is scarce or not accessible, while big-data 

science relies on an abundance of data. 

(vi) Last not least, the theoretical differences are mirrored in the computational hardware 

employed in the different practices. While computer simulations mainly rely on the 

computational power and storage capacity of a single computer or computer cluster, big-data 

science draws on a wider variety of information technologies including sensor devices 

enabling automated data capture, such as gene sequencing machines, interfaces, and network 

infrastructure that links these sensors and interfaces with servers and computers, thus allowing 

the efficient and automated buildup and processing of large high-dimensional data sets. 

3. The contextualization of science: Big-data laws and causality 

In a much-cited and influential article, journalist Chris Anderson, at the time editor in chief of 

the technology and lifestyle magazine Wired, wrote some controversial remarks how big data 

affects science: ‘Correlation supersedes causation, and science can advance even without 

coherent models, unified theories, or really any mechanistic explanation at all.’ (2008) The 

ideas condensed in this brief statement have been readily picked up by both mainstream 

media and academia. Occasional critical reactions have mostly focused on Anderson’s thesis 

concerning ‘the end of theory’.
3
 I will now explain why Anderson’s claim about the 

significance of causation is mistaken, the changes in modeling will be discussed in Section 4. 

Nancy Cartwright once highlighted as central feature of causation that causal knowledge can 

ground effective strategies (1983, Ch. 1). A mere correlation cannot tell how to effectively 

intervene in the world, e.g. the birthrate cannot be changed by increasing the population of 

storks, even though studies consistently show a significant correlation between both 

quantities. By contrast, headaches can be cured by taking acetylsalicylic acid because there is 

a direct causal connection. Thus, if big data is about making predictions regarding 

interventions, e.g. making people vote for a specific candidate or click on a certain ad, then it 

must aim for causal knowledge and cannot be satisfied only with correlations. Note that 

reliable predictions, even if they cannot justify interventions, always require causal 
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 It is quite revealing that Anderson misquotes Google research director Peter Norvig with the statement: ‘All 

models are wrong, and increasingly you can succeed without them.’ (2008) In a reply on his web page, Norvig 

clarifies: ‘That’s a silly statement, I didn’t say it, and I disagree with it.’ (2009) Certainly, there will always be 

modeling assumptions in any scientific endeavor. Norvig’s actual point had concerned changes in the nature of 

modeling resulting from big data (cp. Section 4). 



knowledge, at least regarding the existence of a common cause. For example the weather can 

be predicted on the basis of a barometer reading because air pressure is a common cause of 

both, while of course the weather cannot be changed by tinkering with the barometer needle.   

Notwithstanding this simple argument, the phrase ‘correlation supersedes causation’ is 

ubiquitous in the debate on big data.
4
 Even academics endorse the idea like psychologist Gary 

Marcus of New York University
5
 or Viktor Mayer-Schönberger of the Oxford Internet 

Institute, who makes it a central thesis of his recent book on big data (2013) coauthored with 

Kenneth Cukier of the British weekly The Economist. The confusion essentially results from a 

conflation of causation with mechanistic explanation. However, recent technical work on 

causality (e.g. Pearl 2000; Spirtes et al. 2000) as well as conceptual analysis (Woodward 

2003) show that knowledge about prediction and control can be derived without a deeper 

understanding of any underlying mechanism. In this article, I will argue for the same point on 

the basis of a difference-making account of causality. 

In the following, I will first outline the basic structure of typical big-data problems, I will then 

present the mentioned difference-making account and will proceed to show how it plays a role 

in some of the classic big-data algorithms. 

3a Big-data problems 

Typical big-data problems concern classification or regression of an output variable y with 

respect to a large number of input parameters x, also called predictor variables or covariates, 

on the basis of large training sets. The main differences compared with conventional problems 

in statistics consist in the high-dimensionality of the input variable and the amount of data 

available about various configurations or states of the system. For example, an internet store 

wants to know how likely someone buys a certain product depending on surf history, various 

cookies and a user profile as well as based on data of other users who have either bought or 

failed to buy the product. A medical researcher examines which combinations of genetic and 

environmental factors are responsible for a certain disease. A political adviser is interested 

how likely a specific individual is going to vote for a certain candidate based on a profile 

combining for example voting history, political opinions, general demographics, or consumer 

data.  

In a classification problem, the output variable has a finite number of possible values. In a 

regression problem, the output variable is continuous. In order to establish an adequate and 

reliable model, extensive training and test data is needed. Each instance in the training and 

test sets gives a value for the output variable dependent on at least some of the input 

parameters. The training data is used to build the model, e.g. determine relevant parameters, 

the test data to validate and verify the model. Using part of the data to determine the accuracy 

of a model is commonly referred to as cross-validation.
6
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5
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6
 An excellent introductory textbook is Russell & Norvig (2009). 
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In this essay, we cannot delve into the technical details of the various algorithms employed in 

big-data science, such as support vector machines, forests or neural networks. I will now 

however introduce two simple algorithms, classificatory trees and naïve Bayes, in order to 

establish how under certain premises these can derive causal knowledge. 

Classificatory trees (Russell & Norvig 2010, Ch. 18.3.3) are used to determine whether a 

certain instance belongs to a particular group A depending on a large number of parameters 

C1, …, CN. With help of the training data, the tree is set up recursively. First, the parameter 

CX is determined that contains the largest amount of information with respect to the 

classification of the training data, as formally measured in terms of Shannon entropy. If CX 

classifies all instances correctly, the procedure is terminated. Otherwise, two subproblems 

remain, namely classifying when CX is present and when it is absent. This step is repeated 

until either all instances are classified correctly or no potential classifiers are left. If the 

algorithm is successful, the resulting tree structure gives a Boolean expression of necessary 

and sufficient conditions for A, which can be interpreted as a complex scientific law: e.g. if 

(C3C2 ˅ C4¬C2)C1 ˅ C6C5¬C1, then A. 

Another simple big-data algorithm is naïve-Bayes classification, which is widely used for 

example in the identification of spam emails. The problem structure is the same as in the case 

of classificatory trees. A number of parameters C1, …, CN, representing for example certain 

words or sequences of words appearing in emails, is used to determine the probability that a 

specific instance is A or not, e.g. that an email is spam or not. Using Bayes’ Theorem: 

P(A|C1, …, CN) = P(A) Πi=1,…,n P(Ci|A) / P(C1, …, CN) 

The ‘naïve’ part of the algorithm is that the parameters Ci are assumed to be independent 

given A, i.e. P(C1, …, CN|A) = Πi=1,…,n P(Ci|A), which of course may not be the case. As 

with classificatory trees, a training set is used to develop the model. It provides representative 

frequencies for joint occurrences of A and the different Ci and thereby the probabilities 

P(Ci|A), P(A), and P(C1, …, CN). On this basis, new instances can be classified given certain 

values Ci. Again, test instances can be set aside to cross-validate the model. 

3b An appropriate account of causality 

The framing of big-data problems as a mapping of boundary conditions to an outcome 

variable fits well with eliminative induction
7
—a scientific method whose history reaches back 

at least to the methodological writings of medieval thinkers like Robert Grosseteste and 

William of Ockham. The most elaborate frameworks are Francis Bacon’s method of exclusion 

(1620/1994, Bk. 2), which arguably was considered the methodological foundation for 

modern science until the end of the 19
th

 century, and John Stuart Mill’s methods of 

elimination (1886, Bk. III, Ch. VIII). In the 20
th

 century, eliminative induction has received 

little attention presumably due to prevailing anti-inductivist views. In the following, I can 

only highlight a few features that are crucial in the context of big-data science. For a more 

comprehensive overview of the method, compare Pietsch (2013). 
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In eliminative induction, a phenomenon A is examined under the systematic variation of 

potentially relevant boundary conditions C1, …, CN with the aim of establishing causal 

relevance or irrelevance of these conditions, relative to a certain context B determined by 

further boundary conditions. Obviously, the framing corresponds exactly to that of big-data 

problems from the previous section. Eliminative induction provides the basic logic for 

exploratory experimentation when theoretical knowledge of a phenomenon is scarce.  

The best known and arguably most effective method is the so-called method of difference that 

establishes causal relevance of a boundary condition CX by comparing two instances which 

differ only in CX and agree in all other circumstances C. If in one instance, both CX and A 

are present and in the other both CX and A are absent, then CX is causally relevant to A.
8
 

There is a twin method to the method of difference, called the strict method of agreement, 

which establishes causal irrelevance, if the change in CX has no influence on A. Eliminative 

induction can deal with functional dependencies and an extension of the approach to statistical 

relationships is straightforward. 

Thus, causal relevance is a three-place relation: a boundary condition C is relevant to a 

phenomenon A with respect to a certain background B of further conditions that remain 

constant if causally relevant or are allowed to vary if causally irrelevant. The restriction to a 

context B is necessary because there is no guarantee that in a different context B*, the causal 

relation between C and A will continue to hold. Causal laws established by eliminative 

induction thus have a distinct ceteris-paribus character.  

Eliminative induction can identify causal laws in terms of necessary and sufficient conditions 

for a phenomenon, relative to a certain context. More specifically, a cause established by this 

method can be formulated in terms of an INUS-condition (Mackie 1965): i.e. an Insufficient, 

but Non-redundant part of an Unnecessary but Sufficient condition. Extensive information of 

all potentially relevant boundary conditions in as many different situations as possible is 

necessary to establish reliable causal knowledge of complex phenomena by means of 

eliminative induction. Exactly this kind of information is provided by big data. 

Furthermore, it is easy to see that the logic of eliminative induction is implicit in both big-data 

algorithms of Section 3a. In the case of classificatory trees, the resulting structure clearly fits 

the logic of necessary and sufficient conditions. Under certain premises, which cannot be 

discussed here due to lack of space, the algorithm will identify true causes. For example, if 

there is a single necessary and sufficient condition CX among the C, the algorithm will return 

CX as cause. 

Similarly, in the naïve-Bayes approach the presence of a sufficient condition, e.g. CX˄CY 

(i.e. P(A | CX,CY) = 1), directly implies P(A | C1,…,CN) = 1. Conversely, the absence of a 

necessary condition CX (i.e. P(CX|A) = 1) implies P(A| C1,…,¬CX,…,CN) = 0. Under 

certain additional premises and if the true causes are among the C, the naïve-Bayes approach 

results in the correct classification. While both algorithms are less rigorous than eliminative 

induction, they stand a good chance to identify the correct causes.  
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In general, including more parameters C will increase the probability that the actual cause of 

A might be among them, while admittedly also increasing the probability for spurious 

correlations, i.e. that boundary conditions accidentally produce the right classification. 

However, more data in terms of instances of different configurations can reduce the 

probability for such spurious correlations. Thus, more data in terms of parameters and 

instances will generally increase the chance that correct causal relations are identified by big-

data algorithms. 

3c Big-data laws 

Mostly, the causal laws established in big-data science are complex relationships that (i) 

involve a large number of parameters and (ii) do not adhere to simple functional 

dependencies. Relatedly, these laws (iii) often hold only in a few instances, i.e. their 

applicability is very limited. Furthermore, there is no reason why (iv) a hierarchy of 

increasing universality should exist into which these laws can be systematically integrated.
9
  

Certainly, generalized laws can always formulated, but for the price that these exhibit a large 

number of exceptions which renders them fairly useless beyond a certain heuristic value. As a 

tentative example, the statement that smoking causes lung cancer can provide useful heuristics 

but is obviously false as a generalized law, since various boundary conditions exist, under 

which the statement is wrong. Big-data science provides a methodology for the complex 

sciences which fail to show the neat, hierarchical structure of laws as familiar for example 

from physics.  

Eliminative induction is well-suited to identify big-data laws with the mentioned 

characteristics. The method can deal with large numbers of parameters and with arbitrarily 

complex relationships that cannot be condensed into simple equations.
10

 It can account for 

context-dependency since it establishes causal relevance only with respect to a certain 

background of further boundary conditions. Furthermore, eliminative induction can identify 

causal relations that hold only in a few instances or even singular causation as follows from 

the method of difference, in which only two instances are compared. No regularity has to be 

taken into account to determine a cause.
11

  

Before the advent of big data, the causal structure of complex phenomena was extremely 

difficult to analyze as it was almost impossible to efficiently collect and handle high-

dimensional data. Mostly, scientists worked with dubious simplifications, e.g. that all but a 

few main influences on a phenomenon could be neglected and that these main influences 

adhered to simple functional relationships. But these assumptions, which are for example 

implicit in the structural equation modeling that is ubiquitous in the social sciences, were 
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 Compare the discussion about functional dependence in Pietsch (2013). 
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 Note that eliminative induction does not lead to a regularity view of causality. In fact, the notions of causality 
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of causality is based on enumerative induction and focuses on the number of instances, eliminative induction 

emphasizes the variation of boundary conditions. 



chiefly motivated not by empirical considerations but merely by the need to make the data fit 

the available scientific toolbox. 

By taking into account an ever larger number of boundary conditions, big data makes possible 

an increasing contextualization of science. Data-intensive science based on eliminative 

induction does not examine phenomena at an ensemble level, i.e. what collections of instances 

have in common, but can address the individual case. Examples of this development are the 

promise of personalized medicine that many health professionals see in big data, the 

microtargeting approaches of big-data political campaigns, personalized web search or 

individualized online advertising.  

3d Data threshold 

For many phenomena there exists a relatively sudden change when data-driven approaches 

become effective (Halevy et al. 2009)—a transition point that could be called a data 

threshold. Halevy et al give a plausible explanation for its existence: ‘For many tasks, once 

we have a billion or so examples, we essentially have a closed set that represents (or at least 

approximates) what we need, without generative rules.’ (2009, 9) The notion of causality 

sketched in Section 3b accounts quite well for this data threshold, since all causal relations 

can be derived with the method of difference and the strict method of agreement once all 

relevant configurations of the examined phenomenon are represented in the data (cp. 

characteristic i from the introduction). Under such circumstances, no abstract or general laws 

are necessary to make predictions about the phenomenon, which enables the horizontal 

modeling to be described in the next section. 

4. Horizontal modeling 

4a Computer epistemology 

As stated in the introduction, a central feature of big data concerns the automation of the 

entire scientific process from data collection to data processing and model building to making 

novel predictions. Data-intensive science is the first genuine machine science in which all 

essential steps can be automated.  

The epistemic boundary conditions of data-intensive science differ substantially from those 

under which the human cognitive apparatus models phenomena
12

, in particular in terms of 

storage capacity and computational power. Most importantly, while humans have to be very 

efficient in determining which data to keep and which to forget or not even perceive in the 

first place, computers can often store and handle all the data they are collecting. 

As argued in Section 3, big-data modeling is particularly suited for the causal analysis of 

complex phenomena, when large amounts of data have to be taken into account, with which 

human memory cannot deal anymore. On the other hand, the models used in big-data science 

are often much simpler than the elaborate theoretical structures developed by humans mainly 
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for the purpose of data reduction. If there is enough data to adequately represent a system, 

there is no need for complex, hierarchical models anymore—at least with respect to 

predictions. As Halevy et al write: ‘invariably, simple models and a lot of data trump more 

elaborate models based on less data.’ (2009, 9) Before providing an overview of the 

characteristics that distinguish big-data modeling from more conventional scientific modeling 

let us first take a look at two examples that can illustrate the differences. 

4b Two examples of big-data modeling 

Machine translation belongs to the standard repertoire of big-data success stories. It illustrates 

particularly well the shift from complex models with relatively scarce data to simple models 

with a lot of data. Although somewhat of an oversimplification, two different approaches can 

be distinguished (Halevy et al. 2009). The rule-based approach models the complex hierarchy 

of grammatical rules of both languages and translates sentences by using a conventional 

dictionary. The data-driven or statistical approach largely neglects the grammatical structure 

and works instead with huge corpora of texts in combination with Bayesian inferential 

statistics. Usually, there will be monolingual corpora, e.g. in English and a foreign language, 

and bilingual corpora containing sample translations, all of them representative of current 

speech practice. The frequencies of words and word sequences in these corpora can be used to 

calculate the most probable translation of a foreign word sequence f into English e using 

Bayes’ rule
13

: argmaxe P(e) P(f|e) / P(f).  

The data-driven approach has been strikingly successful. Apparently, probability distributions 

of words and word sequences yield reasonable results for many tasks such as spellchecking or 

translation, while grammatical knowledge is largely dispensable. Two quotes from 

practitioners well illustrate this remarkable situation. Peter Norvig, who for a long time 

headed Google’s machine translation group, once stated that they have been able ‘to build 

models for languages that nobody on the team speaks’
14

. Frederick Jelinek, a pioneering and 

by now legendary figure in the field, is often quoted with saying that ‘every time I fire a 

linguist, the performance of the speech recognizer goes up’
15

.  

It is not immediately obvious how machine translation fits the notion of causal modeling from 

Section 3, since it does not involve the physical necessity of empirical causal laws. However, 

the logic of necessary and sufficient conditions works just as well for the ‘conventional 

necessity’ of translation rules. The context of a word, i.e. all other words at various distances, 

eventually determines a sufficient condition for the best translation, resulting in an almost 

infinite number of complex and highly context-specific translation rules. It may well be the 

case that simple and general rules entirely fail to exist, i.e. that general rules have so many 

and so diverse exceptions that these cannot be listed. Under such circumstances, the data-

driven horizontal modeling may be the only option available.  
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The second example comes from the social sciences regarding the use of data-intensive 

methods in American elections, in particular Barack Obama’s 2008 and 2012 bids for 

presidential office. Political campaigning is a typical big-data problem as depicted in Section 

3a. Voters are characterized in terms of hundreds or thousands of features x ranging from 

demographic data like age, race or gender to political opinions gathered in surveys to 

consumer data provided for example by credit card companies. Campaign managers are 

interested in causal relationships between these predictors and outcome variables like 

commitment to vote or allegiance to a certain candidate. The approach has been aptly called 

microtargeting (Issenberg 2012). 

In the United States, abundant training data exists because citizens are often willing to 

volunteer information about their voting habits. The resulting models are developed 

algorithmically with little input of political expert knowledge. They are used to determine the 

probabilities that certain persons can be convinced to vote for a specific candidate and which 

means are most appropriate in terms of political message and medium, e.g. contact by mail, 

telephone or a personal visit. While previously, political campaigns addressed larger groups 

of people characterized by just a few parameters such as middle-class Caucasian male, 

microtargeting focuses on individual voters characterized by hundreds or thousands of 

variables. This allows correcting many implicit assumptions about the relevance of traditional 

variables like race, gender or class, essentially redrawing the conceptual boundaries between 

groups on an empirical basis. Indeed, big-data science is especially suited for the 

categorization and classification of phenomena in view of a specific purpose. 

Many applications of big data in the social sciences have a structure that is completely 

analogous to microtargeting. Individuals are characterized in terms of a large number of 

parameters with a specific aim in mind, e.g. to find an appropriate search result or to make 

someone click a certain link or buy a certain product. 

4c Characteristics of horizontal modeling 

We are now in a position to list features that distinguish big-data modeling from more 

conventional scientific modeling. Due to the limited capacity for data storage and processing, 

the latter is geared at an efficient data reduction and an adequate structuring of knowledge 

resulting in a hierarchy of laws of increasing generality. Big-data modeling has a different 

nature due to the ability to handle enormous amounts of data. The hierarchical structuring 

becomes dispensable for prediction and manipulation, hence the term horizontal modeling for 

the big-data approach: 

i) Predictions in horizontal modeling are made directly from the data without taking recourse 

to a simplifying model. Consequently, the laws can be very complex involving a large number 

of parameters and be highly context-specific with often only a small number of instantiations. 

Usually, the number of laws will dwarf that in conventional scientific modeling. 

ii) Since the data already represents all relevant configurations of the phenomenon, there is 

little need to introduce abstract levels of description, the main purpose of which was a clever 



reduction of the data while preserving most of the information content. Big-data models thus 

lack the hierarchical, nested structure that is characteristic of most conventional science. 

iii) Relatedly, the explanatory power of horizontal models is much smaller than that of 

hierarchical models. After all, models become more explanatory according to most accounts 

of scientific explanation the more pronounced the hierarchical structure is with each new level 

of laws or rules constituting a new level of explanation. Consequently, the horizontal models 

provide little understanding, e.g. the understanding of a language is poor without knowledge 

of the grammatical structure. This will be further elaborated in Section 5. 

iv) Idealizations and simplifications play only a minor role in horizontal modeling compared 

with the hierarchical approach, since these are usually introduced to link different levels of 

generality. However, crucial modeling assumptions in the horizontal approach result from 

choices which data to collect and how to analyze it. 

v) Traditionally, models have focused on one or several aspects of a phenomenon while 

leaving out others, i.e. information is reduced in view of a certain purpose. This perspectival 

character is less prominent in horizontal modeling, again since there is no incentive for data 

reduction. 

With respect to the debate on models in philosophy of science, horizontal modeling differs 

from conventional models of data (Suppes 1962, Mayo 1996) in several ways. Few 

restrictions are imposed on the extent and kind of data that is gathered and analyzed (‘messy 

data’). Also, there are fewer modeling assumptions guiding the formulation and analysis of 

the data. Finally, ‘no’ data is discarded in the modeling process. These differences can be 

motivated by the fact that conventional models of data work with parametric statistics while 

horizontal modeling employs non-parametric statistics (cp. Section 6). 

Another relevant comparison concerns causal modeling, in particular in terms of causal 

graphs (e.g. Pearl 2000). In this respect, note that causal relations established by the 

difference-making account of Section 3b cannot fully be represented in terms of simple 

graphs, in particular when it comes to complicated Boolean expressions for causal 

dependencies. Most importantly, the presence of a causal link between parameters often 

depends on the chosen causal background. 

5. Big data’s lack of explanatory power 

We can now clear up the confusion concerning the causal and explanatory nature of big-data 

modeling, essentially resulting from a conflation of causation, mechanisms, and explanation. 

On the one hand, big-data models aim to identify causal relations because they are geared at 

prediction and manipulation of phenomena. On the other hand, big-data models lack 

considerable explanatory virtues. This is often pointed out, for example in the following 

representative quote: ‘The correlations [found in big-data-science] may not tell us precisely 

why something is happening, but they alert us that it is happening.’ (Mayer-Schönberger & 

Cukier 2013, 21) To understand how big-data-models can be causal but fail to be explanatory, 



various notions of explanation have to be carefully distinguished as discussed in the 

philosophy-of-science literature.
16

  

A good starting point is the following distinction: (i) to explain by giving an argument that 

derives what is to be explained from a number of general laws thereby relating a phenomenon 

to other phenomena and achieving unification. For example, the motion of a ball can be 

explained by Newton’s axioms in combination with the law of gravity; (ii) to explain by citing 

the causes that made something happen as in ‘this ink stain is explained by Henry dropping 

his pen yesterday afternoon’.
17

  

In the first case, general laws are explanatory, explanations have the structure of arguments, 

and they aim at unification. In the second case, causes are explanatory, explanations consist in 

lists of causes, and they aim at causal stories. Since big-data science is about causal modeling 

but fails to produce a hierarchical structure, big-data models yield explanation in the second 

sense but largely fail to be explanatory in the first sense. 

The distinction is manifest in the philosophical debate on the nature of explanation. The 

classic deductive-nomological model by Carl Hempel and Paul Oppenheim (1948) is a typical 

example for the first category of explanatory accounts. It construes explanations as arguments 

deriving the explanandum from a combination of general laws plus a number of boundary and 

initial conditions. For example, the dynamics of a pendulum can be explained by the laws of a 

harmonic oscillator plus certain initial conditions. The law of the oscillator in turn is 

explained by Newton’s axioms and Galileo’s law of gravity in combination with certain 

approximations regarding the amplitude of the pendulum. Newton’s axioms in turn can be 

explained by the equations of general relativity given a certain limit. Moving up the hierarchy, 

further levels of explanation are introduced by showing how a phenomenon fits into a 

framework of increasingly general laws. Every additional level furnishes unificationist 

explanation of the level beneath by pointing out similarities and analogies to other classes of 

phenomena. Such explanatory depth is typical for hierarchical modeling. By contrast, 

horizontal big-data models fare badly on this type of explanation, exactly because they largely 

lack a hierarchical structure of increasingly general laws.
18

 

Another example of the first category of explanation is the unificationist account developed 

mainly by Michael Friedman and Philip Kitcher, which directly emphasizes the unifying 

nature. In Friedman’s words: ‘this is the essence of scientific explanation—science increases 

our understanding of the world by reducing the total number of independent phenomena that 

we have to accept as ultimate or given. A world with fewer independent phenomena is, other 

things equal, more comprehensible than with more.’ (1974, 15) Philip Kitcher develops the 

idea further to account for explanation in terms of argument patterns (1989). Harmonic 

oscillators or Newton’s axioms are examples of such patterns. Obviously, in its reductionist 

spirit the unificationist account is quite similar to the hypothetico-deductive account. Both 
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18
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motion from a video covering all relevant states of the pendulum. 



want to derive an observation or phenomenon from a small number of sufficiently general 

laws, only the former focuses on argument structure while the latter on the premises. 

The second type of explanatory accounts, causal explanation, can of course only be 

understood with a notion of causation already in place. Various explications are discussed in 

the literature, for example statistical relevance or counterfactual accounts. For this article, we 

will stick with the difference-making approach sketched in Section 3. As should be obvious 

from the discussion there, big-data models are perfectly suited to yield causal explanations, to 

tell causal stories why something happened. Note that causal explanation occasionally may 

not achieve unification at all. After all, the method of difference can identify singular 

causation. 

Let me conclude the section with two remarks: First, scientific understanding usually 

presupposes unificationist explanation. A phenomenon is understood by linking it to other 

phenomena and reducing the number of independent assumptions. The smaller this number 

and the larger the range of phenomena covered, the deeper the perceived understanding of a 

topic. Obviously, this notion of understanding is intimately tied to hierarchical modeling and 

to the conscious human cognitive apparatus with its limitations in data storage and processing. 

Second, phenomena in the complex sciences, e.g. the social sciences, may not be accessible to 

unificationist explanation at all, because of an absence of laws of significant generality. 

Consequently, human understanding of these phenomena may always be considerably 

impaired. This implies reconsidering the role of human experts in the complex sciences as 

they are traditionally thought to guide the research process by providing understanding. Big-

data science often functions without understanding, as some of the pertinent examples show: 

machine translation without knowledge of grammar, advertising without classical advertising 

knowledge, campaigning without in-depth political-science knowledge.  

6. Science without equations: The paradigm shift in statistics 

The notion of a qualitative change from hierarchical to horizontal modeling is further 

corroborated by a concurrent paradigm shift in statistics, which has been described as a 

transition from parametric to non-parametric modeling (e.g. Russell & Norvig 2010, Ch. 

18.8), from data to algorithmic models (Breiman 2001), or from model-based to model-free 

approaches. Since the shift concerns methodology and not theoretical or empirical content, it 

differs in important ways from scientific revolutions. Nevertheless, the statistics community 

currently experiences some of the social ramifications and ‘culture clashes’ that are typical for 

scientific paradigm shifts as documented for example in Breiman (2001) or in Norvig’s 

dispute with Noam Chomsky on data-driven machine translation (Norvig 2011). 

Several features distinguish parametric from non-parametric modeling, which were in part 

already mentioned in the comparison between hierarchical and horizontal modeling (cp. 

Section 4): i) Parametric methods usually presuppose considerable modeling assumptions. In 

particular, they summarize the data in terms of a ‘small’ number of model parameters 

specifying for example a Gaussian distribution or linear dependence, hence the name. By 

contrast, non-parametric modeling presupposes few modeling assumptions, e.g. allows for a 



wide range of functional dependencies or of distribution functions. ii) In non-parametric 

modeling, predictions are calculated on the basis of all data. There is no detour over a 

parametric model that summarizes the data in terms of a few parameters. iii) While this 

renders non-parametric modeling quite flexible with the ability to quickly react to unexpected 

data, it also becomes extremely data- and calculation-intensive. This aspect accounts for the 

fact that non-parametric modeling is a relatively recent phenomenon in scientific method. 

Non-parametric models allow for novel ways to deal with complexity: iv) A crucial shift 

occurs from equation modeling to algorithmic modeling. Conventional parametric modeling 

in terms of equations, describing for example functional dependencies or distribution 

functions, already presupposes that the picture has been reduced to a small number of 

parameters and to relatively simple functional relationships. By contrast, algorithmic 

modeling does not have such restrictions. It relies less on sophisticated mathematics and more 

on a brute-force execution of a large number of steps, when for example an algorithm 

searches a large data-base for similar cases. Algorithmic models consist of the original data 

and an algorithmic procedure to derive predictions from the data.  

v) As discussed in Section 5, the complexity of non-parametric models prevents a deeper 

understanding of the phenomena. Thus, there is a shift in epistemic values regarding the aims 

of modeling. Non-parametric modeling is geared almost exclusively at prediction and 

manipulation and rarely at understanding in terms of general laws or rules. By contrast, 

parametric modeling usually emphasizes understanding. While parametric modeling often 

correlates with a realist and reductionist viewpoint, non-parametric modeling has 

instrumentalist and pluralist connotations. The instrumentalist attitude is for example 

apparent in the wide-spread use of ensemble methods that combine different models even if 

these start from mutually contradictory assumptions. Presumably, this shift in epistemic 

values is at the root of the mentioned divide between the different ‘cultures’ of statistical 

modeling. 

Let me illustrate these changes by means of two examples, first the comparison between 

parametric and non-parametric regression and second between parametric and non-parametric 

density estimation. In a parametric univariate linear regression problem, one has reasonable 

grounds to suspect that a number of given data points (xi;yi) can be summarized in terms of a 

linear dependency: y = ax + b. Thus, two parameters need to be determined, offset b and 

slope a, which are usually chosen such that the sum of the squared deviations ∑     
 
   

          is minimized. 

In non-parametric regression, the data is not summarized in terms of a small number of 

parameters a and b, but rather all data is kept and used for predictions (Russell & Norvig 

2009, Ch. 18.8.4). A simple non-parametric procedure is connect-the-dots. Somewhat more 

sophisticated is locally weighted regression, in which a regression problem has to be solved 

for every query point xq. The yq-value is determined as yq = aqxq + bq with the two parameters 

fixed by minimizing ∑                          
  

   . Here, K denotes a so-called 

kernel function that specifies the weight of the different xi depending on the distance to the 

query point xq in terms of a distance function d(). Of course, an xi should be given more 

weight the closer it is to the query point.  



The generalization to higher dimensions is straight-forward though for next-neighbor methods 

an important issue arises that has been termed the ‘curse of dimensionality’. With increasing 

number of dimensions, i.e. of predictor variables, the average distance between neighboring 

points rapidly becomes very large of order (1/N)
1/n

, where N is the total number of points and 

n the number of dimensions. Consequently, the data points will almost always be sparsely 

distributed in many dimensions.
19

 

Let us briefly reflect how these regression methods illustrate the differences between 

parametric and non-parametric modeling i) to v). While in parametric regression, linear 

dependency is presupposed as a modeling assumption, the non-parametric method can adapt 

to arbitrary dependencies. In parametric regression, the nature of the functional relationship 

has to be independently justified by reference to a theoretical context, which prevents an 

automation of the modeling process. Certainly, non-parametric regression also makes 

modeling assumptions, e.g. a suitable kernel function must be chosen that avoids both over- 

and underfitting. However, within reasonable bounds the kernel function can be chosen by 

cross-validation. Since often, predictions turn out relatively stable with respect to different 

choices of kernel functions, an automation of non-parametric modeling remains feasible. 

While non-parametric regression is more flexible than parametric regression, it is also much 

more data-intensive and requires more calculation power. Notably, in the parametric case, a 

regression problem must be solved only once. Then all predictions can be calculated from the 

resulting parametric model. In the non-parametric case, a regression problem must be solved 

for every query point. In principle, each prediction takes recourse to all the data. While the 

parametric model consists in a relatively simple mathematical equation, the non-parametric 

model consists in all the data and an algorithmic procedure for making predictions. 

Consider density estimation as a second example (Russell & Norvig 2009, Ch. 20.2.6). The 

parametric approach makes an explicit assumption about the nature of the distribution 

function, for example a Gaussian distribution      
 

 √  
 
 

      

   . This distribution is 

determined by two parameters, the mean µ and the standard deviation σ, which are chosen 

such that a best fit with the data is achieved.  

A simple non-parametric approach is the histogram method, where the parameter space is 

partitioned into cells of equal volume dV and the number ki of all N data points is counted for 

each cell i. The density is given by f(x) = ki / N dV, where ki is the number of data points in 

the same cell as the query point x. A closely related often more effective non-parametric 

method is k-nearest-neighbors, where the same formula is used but k is now fixed and one 

determines the minimal volume dV surrounding the query point x such that k points are 

included. The parameter k should be chosen in a way to avoid overfitting, but still be 

sufficiently sensitive. A suitable value can again be chosen by cross-validation allowing for 

straight-forward automation of the non-parametric approach. 
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Again, in the parametric case the data is summarized in terms of a model characterized by a 

few parameters µ and σ resulting in a simple formula, while the non-parametric method 

makes no assumptions about the nature of the distribution function and is thus much more 

flexible. On the other hand, the non-parametric method is very data-intensive since it uses the 

original data points to make predictions. The difference between the two types of models is 

striking: While parametric models usually are simple equations, the non-parametric models 

consist in the original data plus an algorithm to derive predictions from the data.  

7. Conclusion: The new science of complexity 

The horizontal modeling based on non-parametric statistics will in the coming years greatly 

extend the causal knowledge in the complex sciences. Opportunities lie for example in 

medicine and epidemiology when dealing with complex diseases like allergies, asthma, and 

cancer or in ecology when trying to understand complex processes like the recent worldwide 

decline in bee populations. Presumably, more effective ways of management will become 

possible through big data in both economics and politics. However, there are also 

considerable dangers concerning potential abuses especially in the social sciences, where 

most of the large data sets are currently collected.  

The knowledge established by big-data methods will consist in a large number of causal laws 

that generally involve numerous parameters and that are highly context-specific, i.e. 

instantiated only in a small number of cases. The complexity of these laws and the lack of a 

hierarchy into which they could be integrated prevent a deeper understanding, while allowing 

for predictions and interventions. Almost certainly, we will experience the rise of entire 

sciences that cannot leave the computers and do not fit into textbooks. 
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